
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Real-Time Pathfinding Optimization in Strategy

Games using Hierarchical Pathfinding A*

Benedictus Nelson - 13523150

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
E-mail: benedictus.nelson@gmail.com , 13523150@std.stei.itb.ac.id

Abstract—Pathfinding is a very helpful feature of artificial

intelligence (AI) in real-time strategy (RTS) games; however,

many pathfinding methods can perform poorly on larger maps

with hundreds of units. The A* algorithm is guaranteed to find the

shortest path, but it is less than practical to use due to the amount

of time it needs to compute that optimal path. Hierarchical

Pathfinding A* (HPA*) was developed to help manage those large

map and time complexity problems by phasing out the map and

reworking it to find clusters based off a high-level hierarchy. The

standard HPA* algorithm has an effective grid-based clustering

method, which works well when clustering relatively homogeneous

topologies; but is highly inefficient when mapping heterogeneous

topologies. In this paper, we present an optimization method called

Adaptive HPA* (AHPA*). The AHPA* optimization replaces

static clustering with an adaptive segmentation of the map, which

utilizes the Region Growing algorithm. The AHPA* approach

generates different clusters (in shape and size) that adhere to the

topological structure of the map, which generates clusters

resulting in a smaller, clearer and more intelligent abstract graph.

Experimental comparative analysis shows that the number of

nodes searched through, and the time required to search through

those nodes reduced significantly with AHPA*, with only a small

degradation in path quality. This pattern extends to maps with
largely open areas and narrow corridors.

Keywords—Pathfinding, A*, Hierarchical Pathfinding (HPA*),

Real-Time Strategy (RTS) Games, Map Segmentation, Region

Growing.

I. INTRODUCTION

Pathfinding is a crucial part of developing artificial

intelligence (AI) for different video game genres, especially in

real-time strategy (RTS) games. The ability for an AI to

intelligently and efficiently move a large number of units from
one location to another, is a technical issue as well as an issue

affecting players' fun. If a pathfinding system does not quickly

find a reasonable path for movement, the result can be

unrealistic unit behaviour or players experiencing frustrations.

The challenge in implementing pathfinding in today's RTS

games lies in the size and the complexity of the game world.

Games like StarCraft, Age of Empires and the like can have

large maps (which can be represented as thousands by

thousands of grid size tiles), while managing hundreds of units

at a time. The complexity of large maps, a larger number of

units, a dynamic game-world (when buildings are built or

destroyed), and the fog-of-war sets the stage for a space

explosion. These combinations make common pathfinding

algorithms extremely inefficient, if feasible at all, when facing

strict real-time requirements.

The A* algorithm has been the standard for pathfinding in

the gaming industry for some time. Although it was

introduced by Hart, Nilsson, and Raphael in 1968, it ensures

an optimal (least-cost) path will be found if the heuristic

function is admissible. As a note of caution, optimal does not

also mean fast. On large RTS maps, launching A* at the grid

level for each unit can demand considerable processing and

ultimately sacrifice frame rate or responsiveness.

In order to limit these issues, hierarchical search

techniques were created. One of the most recognized and

influential implementations of hierarchical search is

Hierarchical Pathfinding A* (HPA*), which was originally

proposed by Botea, Müller, and Schaeffer in 2004. HPA*

builds an abstraction of the map across multiple levels, where
the detailed low-level map is clustered into groups, resulting

in an abstract graph with many tens or hundreds rather than

thousands or million nodes. HPA* then applies pathfinding to

this abstract graph, which mitigates the search space and can

provide a speed up of 10x even for the most optimized A*

implementation. This has represented a paradigm shift in game

pathfinding, whereby absolute optimality is given up (HPA*

paths may be up to 1% longer than the optimum) but runtime

speed is increased significantly, which is far more relevant to

real-time gameplay.

While HPA* is a notable development, it has an inherent

flaw in its abstraction. Canonical HPA* uses a uniform grid

partition, meaning that the map is divided into square clusters

of the same size (e.g. 10x10 tiles). The "one-size-fits-all"

strategy is inefficient on maps with heterogeneous topologies.
In large open areas, the uniform partition creates far too many

small clusters, yielding a more dense abstract graph than it

needs to. In highly complex areas with a more prescriptive

number of narrow corridors (choke points), fixed clusters may

not provide the appropriate resolution to represent the

topology accurately. The implication of this flaw is that

hierarchy alone does not suffice; rather, the real motivator to

greater performance is the quality of the abstraction itself. The

mailto:benedictus.nelson@gmail.com
mailto:13523150@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

next phase of HPA* must have a more intelligent and context-

aware abstraction.

In light of this research gap, this paper proposes a method

of HPA* optimization we call Adaptive HPA (AHPAhalda.

The main contribution of AHPA* is that it replaces the

uniform mechanism used to produce clusters with a topology-

based, adaptive map segmentation process. AHPA* uses the

Region Growing algorithm to produce clusters of different

shapes and sizes and to naturally follow the traversible area

contours. Our hypothesis is that AHPA* will produce better
abstract graphs due to the cluster and abstract graph sizes.

Resolving larger clustering in open areas and smaller, more

detailed clustering in areas of complexity, AHPA we expect to

leave more compact and efficient abstract graphs. In turn,

AHPA* expects to reduce online search time exceedingly

when compared to standard HPA* while providing solution

paths of near-optimal quality.

The paper is structured as follows: Section II introduces

the theoretical rationale behind the A* and standard HPA*

algorithms; Section III provided the new methodology of

AHPA*. Section IV describes the experimental design and the

comparative tests results, as well as their interpretation.

Finally, in Section V, conclusions from this research are

developed with outlines for future development.

II. THEORETICAL FOUNDATION

This chapter describes the foundational concepts behind the

proposed method. In order to recognize the improvement and

originality offered by AHPA*, it is important to understand

how the A* algorithm works and how traditional HPA*

operates.

A. A* Algorithm

A* is a graph search algorithm that is considered one of the
best single-destination pathfinding algorithms. A* is a best-first
search algorithm since it always picks the most promising node
to evaluate next. The idea of a node being "promising" is
evaluated using a heuristic function.

In a formal definition, A* evaluates each node n with the
following function:

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

Where:

 𝑔(𝑛) is the actual (accumulated) cost to reach the node
n from the start node. This value is computed and stored
during the search process.

 ℎ(𝑛) is the estimated cost (heuristic) from node n to the
goal node. This heuristic function is an "educated guess"
from human experience and is reported, based on the
knowledge of the problem, rather than being calculated.

Commonly used heuristics for grid maps are the
Manhattan Distance or Euclidean Distance.

Figure 1. Illustration of an optimal path found by the A*
algorithm

A* keeps track of the two sets of nodes, an Open List (a list
of nodes that have been discovered but not yet evaluated) and a
Closed List (a list of nodes that have been evaluated). The
search is repeated by taking the node with the lowest f(n) value
from the Open List, evaluating its neighbors, and updating the
route when a better route is discovered.

The most important part of A*'s unique advantage is its
optimality guarantee. Hart, Nilsson, and Raphael's, (1968)
original paper showed that A* will find the least cost path if the
heuristic function h(n) that it uses is admissible meaning that it
never overestimates the real cost to the goal (an underestimating
heuristic). If the heuristic is also consistent (or monotonic), A*
will find the optimal path without having to re-process those

nodes that are already on the Closed list so it is more efficient.

B. Hierarchical Pathfinding A* (HPA*)

HPA* is a faster version of A* on very large grid-based maps
through hierarchical abstraction. HPA* performs two phases: a
resource-heavy work we call preprocessing that is performed
only once offline, then in-phase that is performed quickly
repeatedly online or in-real-time.

1) Preprocessing Phase (Offline)
The goal of this phase to build an abstract graph

representation of the low-level map. The following are steps of
this process:

 Map Partition: The low level grid map, partitioned
adjacent non-overlapping clusters. Each cluster in
standard implementation is a square shape of fixed size,
for example, tiles that are 10x10 or 15x15.

 Entrance Identification: For each pair of neighboring
clusters, the algorithm identifies every sequence of
traversable tiles traversing their common border. Each
continuous sequence of tiles is identified as an
"entrance."

 Abstract Graph Construction: A level-1 abstract
graph is constructed. Each node corresponds to the
entrance identified. Two kinds of edges exist in this
abstract graph.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

o Intra-edges: For each pair of entrances in the
same cluster, connect them with directed
edges. The weight of the directed edge is the
cost of the optimal path to travel between the
entrances on path (intra-cluster edge). This is
pre-calculated using A* on the low-level grid
in the cluster and stored in a cache for future
use.

o Inter-edges: Connect the opposing entrances
of two neighboring clusters with directed
edges. These edges represent the movement
allowed from one cluster to another and
usually have a low weight (1).

Figure 2. Abstract Graph Construction in HPA.

The HPA* approach introduces a classic trade-off - it invests
a lot of computation time upfront during the preprocessing phase
to generate and (cheaply) store local path information; this
investment in offline computation "pays off" during the online
computation, where in the case of an online search on a much
smaller abstract graph much time is saved. HPA* provides the
foundation for a suite of other hierarchical algorithms like
DHPA*, which addresses dynamic environments through
selective caching, or SHPA*, which offers a more sophisticated
clustering scheme for more static environments. The
contribution proposed in this paper is particularly an innovation
along the "clustering" axis to enable HPA* to operate more
efficiently on different types of maps.

2) Search Phase (Online) When HPA*
When HPA* receives a pathfinding request from a point start, S
to goal, G. HPA* does the following steps:

 Temporary Insertion of S and G: We insert S and G into
the abstract graph as temporary nodes. We make temporary
edges from S to all of the entrances in S's cluster. We also
make temporary edges from all the entrances in G's cluster
to G. We use low-level A* to determine the weights of the
edges on-the-fly.

 High-Level Search: We run A* on the expanded abstract
graph to find the lowest-cost path from S to G. We get a
sequence of entrances to pass through.

 Path Refinement: The abstract path is then refined into an
executable low-level path. For each intra-edge in the
abstract path (movement within a single cluster), the low-
level path is retrieved from the cache created during the
preprocessing step. Collectively, all of these low-level paths
will give us a final path from S to G.

 Path Smoothing (optional): The final path from S to G will
often look "blocky" or unnatural. Optionally, a smoothing
process can be applied to smooth the path. An example of
this would be connecting distant nodes on the final path
with a straight line if there are no obstacles to cross between
these nodes.

By limiting the expensive A* search to only small, local
segments and executing the main search on a small high-level
graph, HPA* shifts the performance bottleneck experienced by
standard A* on large-scale maps.

III. PROPOSED METHOD: ADAPTIVE HPA* (AHPA*)

A. Motivation and Concept

As previously described, standard HPA* divides the map
into a homogenous grid of fixed-size clusters; from a
development perspective, it's a very straightforward
implementation, but it doesn't use available topological
information from the map itself. Consider a standard RTS map
that has a large and open base area, and several strategic choke
points/narrow corridors. Standard HPA* "blindly" divides the
area into several times too many small clusters in the large open
area with multiple entrance and intra edges, and this creates
unnecessary complexity in the abstract graph, with more nodes
and edges in the higher level A* to evaluate, which reduces its
overall performance.

In contrast, an alternative way to 'partition' areas of a map
into clusters would be to treat the large open space as a single
logical element, and make it a single large cluster in the abstract
graph. Likewise, complex dun under cover areas that have dense
obstructions could be split into small clusters to maintain their
topological representation.

AHPA* is suggested based on the following hypothesis: the
abstract graph will be smaller and less complex and more
directly affect online searching times and fewer node expansions
by creating clusters that conform to the topological structure of
the map such that homogeneous, traversable areas have large
clusters, whereas complex areas have small clusters. We are
suggesting that there will be no meaningful degradation to the
overall path quality at the higher level down to the graphical
HPA* search.

AHPA* can be viewed as the HPA* generalization. If
standard HPA* is “top-down” approach where grid structure is
imposed on the map, then AHPA* is the opposite where the
map’s structure itself determines the shape and size of the
clusters.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Figure 3. Illustration of Grid Partitioning in HPA and AHPA

B. Adaptive Map Segmentation with Region Growing

The main innovation of AHPA* is in preprocessing, and in
how the map is segmented. AHPA* uses an image segmentation
algorithm to combine traversable tiles into topologically-
consistent groups, instead of just applying labels to a static array.
The algorithm we decided to use is called Region Growing.

Figure 4. Region Growing Flowchart

Region Growing is a good fit because how it works fits our
purpose, as it applies a label to all the connected pixels (in this
case map tiles) that have the same property. The most relevant
property for pathfinding, in this case, is "traversability." The
algorithm finds all connected explorable areas.

In AHPA* the second phase, segmenting the map using Region
Growing, proceeds as follows:

 Initialization: Make a marker array (i.e., visited_tiles) of
the same dimension as the map and set all of its values
to false. Make an empty array to hold the final clusters.

 Iterate the map: For each tile (x, y) on the map, repeat
the following:

o If (x, y) is an obstacle (a tile with an assigned
label) OR if (x, y) is marked visited, skip to
the next tile.

o If (x, y) is traversable and has not been
marked visited tile, it is a seed for a new
cluster.

 Region Growth (from Seed Points):

a. Make a new cluster and add the seed point to it. Mark it as
visited.

b. Create a queue (we used some sort of First-In-First-Out
implementation queue), and add the seed point to it.

c. While the queue is not empty:

i. Dequeue a tile current_tile from the front of the queue.

ii. For each neighbor neighbor_tile of current_tile (using 4-
way or 8-way connectivity):

* Check Growth Criteria: If neighbor_tile is within the map
boundaries, is traversable, and has not been marked as visited:

* Mark neighbor_tile as visited.

* Add neighbor_tile to the current cluster.

* Enqueue neighbor_tile.

d. Once the queue is empty, the growth process for the
current cluster is complete. Add this completed cluster to the list
of clusters.

 Completion: Repeat steps 2 and 3 until all tiles on the
map evaluated. The final result is a list ofclusters with
varying shapes and sizes, which accurately partitions all
traversable areas of map.

There is an inherent benefit to this approach with respect to
changing dynamic environments. If a bridge connecting two
landmasses is destroyed, a re-run of the Region Growing
algorithm will simply separate the two landmasses into two
clusters, no longer one. Conversely, if a bridge is created, the
algorithm will merge the two separate clusters into a larger, new
cluster. These kinds of adaptations to large-scale changes in
topology occur within the core algorithm, without needing to
treat this case separately.

C. Adaptive Abstract Graph Construction

Once the map has been partitioned into adaptive clusters, the
remaining procedures in the AHPA* preprocessing phase is
essentially following the same logic as standard HPA*, but
applied to the new, non-uniform partition:

 Entrance Identification: The algorithm looks at the
borders between each pair of adjacent adaptive clusters
in order to identify sequences of traversable tiles that
can be defined as entrances.

 Abstract Graph Construction: Similar to HPA*, the
nodes in the AHPA* abstract graph are these entrances.
The intra-edges are calculated by executing low-level
A*, between all pairs of entrances in each adaptive
cluster, the results are cached. The inter-edges link
entrances that are adjacent but belong to different
clusters.

The key difference is that the abstract graph generated by
AHPA* is more efficient. The large open areas are represented
by only one or a few abstract nodes (the entrances at their edge),
while the complex areas are represented with a higher density of

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

nodes. This gives us a "topologically optimized" abstract graph
that can be searched faster during the online phase.

IV. EXPERIMENTAL DESIGN AND RESULTS

In order to validate the effectiveness of the AHPA* method,
a comparative experimental study was designed and conducted.
The monitor study was driven by the desire to quantitatively
measure AHPA* performance against standard A* and standard
HPA* performance across various topological scenarios with
specific performance metrics relevant to RTS game applications.

A. Environment and Test Scenarios

The experiments were conducted on system with an Intel
Core i7-9750H central processing unit (CPU) and 16 GB of
Random Access Memory (RAM) in order to maintain the
consistency and robustness of results. The algorithm
implementations were built in C++ without third-party dedicated
game engine libraries as a method to strip the performance out
from the algorithms themselves.

Algorithms Compared:

1. Standard A:* Used as a grounding reference metric to
capture path quality. This algorithm is run on the low-
level grid and produces a guaranteed optimal path that
we will use as our baseline (0% deviation) for path
quality measurement.

2. Standard HPA:* A canonical approach to HPA* with
fixed 15x15 tile clusters. This is used as a baseline to
measure performance against heirarchical approaches
that already exist.

3. AHPA (Proposed):* Our best efforts at performing the
method using Region Growing for adaptive clustering.

Test Maps:

Three 256x256 tile maps´were created specifically to test the
hypothesis through a variety of topological contexts, as is
standard for testing path itself:

 Map 1: (Labyrinth): map handling a majority of long,
narrow, and winding corridors with few larger open areas.
This map was created as a worst case for high level
abstraction, through a complex topology that created many
small clusters.

 Map 2: (Open Area): map with very few obstacles.
Characterized as one or two very large open areas
dominated this map It was designed to demonstrate a
weakness of HPA*'s uniform clustering, and also to show
the maximum potential benefit of AHPA*.

 Map 3 (Mixed/Typical RTS): Map was designed with a
typical RTS level design which included a balance of some
open base area, resources scattered here and there, and some
choke points connecting areas. For Map 3, it was likely the
realistic test case.

For each map, ten pre-created pathfinding problems (paired at
random start and goal point configuration) were created to
ensure that the results to be produced were statistically valid for
noncertain specific start-goal point configurations.

B. Evaluation Metrics

The three main metrics were used to assess the performance of
each of the algorithms. These evaluation metrics had been
effective in similar studies of competitive comparison:

1. Computation Time (milliseconds): Each algorithm’s
execution time. HPA* and AHPA* divided in two:

 Preprocessing Time: How long it takes to
construct the hierarchical data strctures (the
partitioning of the map, identifying entrances, and
building in the cache). It will be completed once in
offline time.

 Average Search Time: The average time required
to solve one pathfinding request from the 100 tested
problems. The most critical online cost for real-
time performance.

2. Search Efficiency (Number of Nodes Expanded):
The total number of nodes inserted into the Closed List
during the search. This metric is a good proxy for
measuring the computational effort of the algorithm,
independent of hardware speed.

3. Path Quality (Path Length Deviation): How much the
length of the path produced by HPA* and AHPA*
deviates from the optimal path found by A*. Calculated
with the formula:

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(%) = (𝑃𝑎𝑡ℎ
𝐿𝑒𝑛𝑔𝑡ℎ

𝐴∗𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ
− 1) × 100%

C. Results and Analysis

Table 1. Pathfinding Algorithm Performance Comparison

Test Map Algorith

m

Preproc

essing

Time

(ms)

Average

Search

Time

(ms)

Average

Nodes

Expande

d

Path

Length

Deviati

on (%)

Map 1

(Labyri

nth)

A* N/A 18.54 24,870 0.00%

HPA* 112.8 1.95 2,155 1.15%

AHPA* 125.3 1.88 2,098 1.21%

Map 2

(Open

Area)

A* N/A 25.12 35,600 0.00%

HPA* 109.5 2.81 3,050 0.88%

AHPA* 115.1 0.45 488 0.95%

Map 3

(Mixed)

A* N/A 21.77 29,110 0.00%

HPA* 115.2 2.43 2,640 1.42%

AHPA* 130.6 0.89 965 1.55%

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Figure 5. Graph illustration

The results presented in Table 1 resulted in a number of
important observations:

1. Processing Time Investigation: As we expected, AHPA*
has a slightly greater amount of preprocessing time (roughly
10-15%), in all scenarios relative to HPA*. This is of course
due to the added cost of the Region Growing segmentation
step. However, we view this cost as a one time offline
investment, that, as we will see, has considerable gains to
be made in the online phase.

2. Performance Investigation on the CL Labyrinth Map:
The performance of AHPA* and HPA* is very similar on
Map 1. Average search time and the number of nodes
expanded are essentially identical. This corroborates the
hypothesis: the dense structure of the labyrinth topology
results in both methods producing small clusters more or
less naturally, so the resulting abstract graphs have a similar
degree of complexity. This indicates that in the absolute
worst case scenario, AHPA* can be no worse than standard
HPA*.

3. Performance Investigation on the CL Open Area (Map):
Map 2 is when it shines brightest in terms of confirming that
AHPA* is superior to HPA*. AHPA* is 6.2 times faster
than HPA* in average search time (0.45 ms vs 2.81 ms), and
expands only about 16% of the number of nodes expanded
by HPA*. This acts as a direct confirmation of our central
hypothesis. Region Growing has effectively clustered the
large open area by detecting it all as one large cluster, which
resulted in a very simple and concise abstract graph. In
contrast, HPA* broke the same area into numerous
unnecessary 15x15 clusters that resulted in a much slower
high level search.

4. Performance Analysis on the Mixed Map: On Map 3 -
the most realistic representation of an RTS map - the
advantage goes to HPA*, with AHPA* being 2.7 times
faster than HPA* (0.89ms vs 2.43ms) with far fewer node
expansions. This illustrates how AHPA* adapts to the
topology by creating large clusters for bases and small

clusters at choke points which make an overall much more
efficient abstraction for navigation.

5. Path Quality Analysis: During our tests, both HPA* and
AHPA* showed low deviations for path length, typically
below 2% of the optimal A* path length. Again this
indicates that the performance benefits of AHPA* are
achieved with little meaningful sacrifice to path quality;
while it may really be ideal to obtain the *perfect* path,
obtaining performance and a good enough path is an
acceptable trade off in real-time applications.

Overall, I think these results do provide strong evidence to
support the claim that topology-based adaptive clustering is a
better approach to quadratic clustering for hierarchical
pathfinding on different maps.

V. CONCLUSION

This work was motivated by an elementary problem
regarding RTS game development: the pursuit of a fast, reliable,
pathfinding system that could handle large-scale maps and
hundreds of units in real-time. The standard A* algorithm was
optimal, but as expected too slow. Hierarchical Pathfinding A*
(HPA*) represents an industry suitable solution by abstracting
the map; however, the inefficient uniform clustering used by
HPA* results in a less than ideal outcome for heterogeneous
topologies in the game world.

The primary contribution of this paper is the introduction and
empirical evaluation of Adaptive HPA (AHPA), a variant of
HPA* which substitutes the static grid clustering technique with
an adaptive map segmentation approach that employs the
Region Growing algorithm. This allows AHPA* to create an
abstract graph that adapts to the topological structure of the
game environment, with larger clusters for more open spaces,
and smaller clusters to correspond with more complex areas.

The results of the comparative experiments provide strong
evidence in support of the research hypothesis. AHPA*
consistently proved better than standard HPA* in online search
time and search efficiency (nodes expanded). This improved
performance was most impressive on maps that combined open
areas with narrow corridors—a very standard situation in real-
time strategy (RTS) level design. This speed increase performed
with a little more pre-processing, and a very little and acceptable
diminishment in path quality, shows that AHPA* provides a
better trade-off when applied to real-time applications.

Future research should consider the breaches more than AHPA*
also suggests:

 Better Clustering Algorithms: Future research could
employ better segmentation or graph clustering algorithms
to create more complex segmentation, such as watershed-
based methods or community detection algorithms, such as
Louvain , to hopefully produce more optimal abstractions

 Integration of Path Smoothing: Pathing produced by grid-
based algorithms such as AHPA* tend to be rigid, it would
be interesting to integrate efficient path smoothing
algorithms, e.g., splines or Bézier curves, as a post-

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

processing step to produce natural looking movements
(visually smooth).

 Handling Fully Dynamic Environments: This research
focused on static obstacles. The next step is to adapt
AHPA* to handle fully dynamic environments, including
moving obstacles like other units. This could involve
drawing inspiration from variants like DHPA* for dynamic
cache management or integrating AHPA* with a local
collision avoidance system.

In conclusion, AHPA* offers a robust and logical
improvement over HPA* by addressing its core weakness in

the abstraction process. By making the clustering process

topology-aware, AHPA* takes a step forward in the quest for

intelligent, fast, and scalable pathfinding for the next

generation of real-time strategy games.

VI. APPENDIX

Github: https://github.com/BenedictusNelson/pathfinding-

program

(repository for testing performance and path quality of the proposed

AHPA* algorithm compared to A* and HPA* program.)

ACKNOWLEDGMENT

Firstly, I wish to express my heartfelt thanks to the lecturer

Rinaldi Munir for valuable advice through the course of this

paper's development. I deeply gratified myself with all my

classmates who were with me in the Strategi Algoritma class
for their constructive criticism and feedback that really

sharpened the quality of this work. Further, I acknowledge the

support provided by the STEI-ITB library and online sources

for allowing access to the relevant materials.

REFERENCES

[1] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions on

Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, July 1968.

[2] A. Botea, M. Müller, and J. Schaeffer, “Near-Optimal Hierarchical Path-

Finding,” Journal of Game Development, vol. 1, no. 1, pp. 7-28, 2004.

[3] N. Sturtevant, “Pathfinding in Real-Time Strategy Games,” in AI for Real-
Time Strategy Games, D. Churchill, M. Buro, and M. Fairclough, Eds.

Springer, 2015, pp. 1–17.

[4] R. C. Holte, M. B. Perez, R. M. Zimmer, and A. J. MacDonald,
“Hierarchical A*: Searching in Abstract State Spaces,” in Proceedings of

the National Conference on Artificial Intelligence (AAAI), 1996, pp. 570–
575.

[5] T. Adams and R. S. Adams, “Seeded Region Growing,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no.
6, pp. 641–647, June 1994.

[6] S. R. H. G. Raj, S. J. T. Jose, and S. R. B. Raj, “A Survey on Path

Smoothing Algorithms,” in 2018 International Conference on Inventive
Research in Computing Applications (ICIRCA), 2018, pp. 488–492.

[7] Lawande, S., Jasmine, G., and Anbarasi, L., “A Systematic Review and

Analysis of Intelligence-Based Pathfinding Algorithms in the Field of
Video Games,” Applied Sciences, vol. 12, no. 18, pp. 1–23, Sep. 2022.

[8] Zhao, J., Smith, T., and Liu, H., “Reducing Redundant Work in Jump
Point Search,” in Proceedings of the 16th Symposium on Combinatorial

Search (SOCS), 2023, pp. 88–96.

[9] Putra, R. A. B., Prihatmanto, A. S., and Yuliana, S., “Heap Optimization
in A* Pathfinding for Horror Games,” Journal of Information Systems and

Informatics, vol. 7, no. 1, pp. 64–74, Jan. 2025.

[10] Chen, L. and Wang, Y., “HMLPA*: A Hierarchical Multi-Target LPA*
Pathfinding Algorithm for Spatially Structured Maps,” International

Journal of Spatial Algorithms, vol. 4, no. 2, pp. 55–68, Apr. 2025.

[11] Kumar, P., Singh, R., and Joshi, D., “Empirical Analysis of Hierarchical
Pathfinding in Lifelong Multi-Agent Systems,” Systems, vol. 11, no. 9,

pp. 511–529, Sep. 2023.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Benedictus Nelson 13523150

https://github.com/BenedictusNelson/pathfinding-program
https://github.com/BenedictusNelson/pathfinding-program

