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Abstract—Pathfinding is a very helpful feature of artificial 

intelligence (AI) in real-time strategy (RTS) games; however, 

many pathfinding methods can perform poorly on larger maps 

with hundreds of units. The A* algorithm is guaranteed to find the 

shortest path, but it is less than practical to use due to the amount 

of time it needs to compute that optimal path. Hierarchical 

Pathfinding A* (HPA*) was developed to help manage those large 

map and time complexity problems by phasing out the map and 

reworking it to find clusters based off a high-level hierarchy. The 

standard HPA* algorithm has an effective grid-based clustering 

method, which works well when clustering relatively homogeneous 

topologies; but is highly inefficient when mapping heterogeneous 

topologies. In this paper, we present an optimization method called 

Adaptive HPA* (AHPA*). The AHPA* optimization replaces 

static clustering with an adaptive segmentation of the map, which 

utilizes the Region Growing algorithm. The AHPA* approach 

generates different clusters (in shape and size) that adhere to the 

topological structure of the map, which generates clusters 

resulting in a smaller, clearer and more intelligent abstract graph. 

Experimental comparative analysis shows that the number of 

nodes searched through, and the time required to search through 

those nodes reduced significantly with AHPA*, with only a small 

degradation in path quality. This pattern extends to maps with 
largely open areas and narrow corridors. 

Keywords—Pathfinding, A*, Hierarchical Pathfinding (HPA*), 

Real-Time Strategy (RTS) Games, Map Segmentation, Region 

Growing. 

I.  INTRODUCTION 

Pathfinding is a crucial part of developing artificial 

intelligence (AI) for different video game genres, especially in 

real-time strategy (RTS) games. The ability for an AI to 

intelligently and efficiently move a large number of units from 
one location to another, is a technical issue as well as an issue 

affecting players' fun. If a pathfinding system does not quickly 

find a reasonable path for movement, the result can be 

unrealistic unit behaviour or players experiencing frustrations. 

The challenge in implementing pathfinding in today's RTS 

games lies in the size and the complexity of the game world. 

Games like StarCraft, Age of Empires and the like can have 

large maps (which can be represented as thousands by 

thousands of grid size tiles), while managing hundreds of units 

at a time. The complexity of large maps, a larger number of 

units, a dynamic game-world (when buildings are built or 

destroyed), and the fog-of-war sets the stage for a space 

explosion. These combinations make common pathfinding 

algorithms extremely inefficient, if feasible at all, when facing 

strict real-time requirements. 

The A* algorithm has been the standard for pathfinding in 

the gaming industry for some time. Although it was 

introduced by Hart, Nilsson, and Raphael in 1968, it ensures 

an optimal (least-cost) path will be found if the heuristic 

function is admissible. As a note of caution, optimal does not 

also mean fast. On large RTS maps, launching A* at the grid 

level for each unit can demand considerable processing and 

ultimately sacrifice frame rate or responsiveness.  

In order to limit these issues, hierarchical search 

techniques were created. One of the most recognized and 

influential implementations of hierarchical search is 

Hierarchical Pathfinding A* (HPA*), which was originally 

proposed by Botea, Müller, and Schaeffer in 2004. HPA* 

builds an abstraction of the map across multiple levels, where 
the detailed low-level map is clustered into groups, resulting 

in an abstract graph with many tens or hundreds rather than 

thousands or million nodes. HPA* then applies pathfinding to 

this abstract graph, which mitigates the search space and can 

provide a speed up of 10x even for the most optimized A* 

implementation. This has represented a paradigm shift in game 

pathfinding, whereby absolute optimality is given up (HPA* 

paths may be up to 1% longer than the optimum) but runtime 

speed is increased significantly, which is far more relevant to 

real-time gameplay. 

While HPA* is a notable development, it has an inherent 

flaw in its abstraction. Canonical HPA* uses a uniform grid 

partition, meaning that the map is divided into square clusters 

of the same size (e.g. 10x10 tiles). The "one-size-fits-all" 

strategy is inefficient on maps with heterogeneous topologies. 
In large open areas, the uniform partition creates far too many 

small clusters, yielding a more dense abstract graph than it 

needs to. In highly complex areas with a more prescriptive 

number of narrow corridors (choke points), fixed clusters may 

not provide the appropriate resolution to represent the 

topology accurately. The implication of this flaw is that 

hierarchy alone does not suffice; rather, the real motivator to 

greater performance is the quality of the abstraction itself. The 
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next phase of HPA* must have a more intelligent and context-

aware abstraction. 

In light of this research gap, this paper proposes a method 

of HPA* optimization we call Adaptive HPA (AHPAhalda. 

The main contribution of AHPA* is that it replaces the 

uniform mechanism used to produce clusters with a topology-

based, adaptive map segmentation process. AHPA* uses the 

Region Growing algorithm to produce clusters of different 

shapes and sizes and to naturally follow the traversible area 

contours. Our hypothesis is that AHPA* will produce better 
abstract graphs due to the cluster and abstract graph sizes. 

Resolving larger clustering in open areas and smaller, more 

detailed clustering in areas of complexity, AHPA we expect to 

leave more compact and efficient abstract graphs. In turn, 

AHPA* expects to reduce online search time exceedingly 

when compared to standard HPA* while providing solution 

paths of near-optimal quality. 

The paper is structured as follows: Section II introduces 

the theoretical rationale behind the A* and standard HPA* 

algorithms; Section III provided the new methodology of 

AHPA*. Section IV describes the experimental design and the 

comparative tests results, as well as their interpretation. 

Finally, in Section V, conclusions from this research are 

developed with outlines for future development. 

II. THEORETICAL FOUNDATION 

This chapter describes the foundational concepts behind the 

proposed method. In order to recognize the improvement and 

originality offered by AHPA*, it is important to understand 

how the A* algorithm works and how traditional HPA* 

operates. 

 

A. A* Algorithm 

A* is a graph search algorithm that is considered one of the 
best single-destination pathfinding algorithms. A* is a best-first 
search algorithm since it always picks the most promising node 
to evaluate next. The idea of a node being "promising" is 
evaluated using a heuristic function. 

In a formal definition, A* evaluates each node n with the 
following function:  

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) 

Where: 

 𝑔(𝑛) is the actual (accumulated) cost to reach the node 
n from the start node. This value is computed and stored 
during the search process. 

 ℎ(𝑛) is the estimated cost (heuristic) from node n to the 
goal node. This heuristic function is an "educated guess" 
from human experience and is reported, based on the 
knowledge of the problem, rather than being calculated. 

Commonly used heuristics for grid maps are the 
Manhattan Distance or Euclidean Distance. 

 

Figure 1. Illustration of an optimal path found by the A* 
algorithm 

A* keeps track of the two sets of nodes, an Open List (a list 
of nodes that have been discovered but not yet evaluated) and a 
Closed List (a list of nodes that have been evaluated). The 
search is repeated by taking the node with the lowest f(n) value 
from the Open List, evaluating its neighbors, and updating the 
route when a better route is discovered. 

The most important part of A*'s unique advantage is its 
optimality guarantee. Hart, Nilsson, and Raphael's, (1968) 
original paper showed that A* will find the least cost path if the 
heuristic function h(n) that it uses is admissible meaning that it 
never overestimates the real cost to the goal (an underestimating 
heuristic). If the heuristic is also consistent (or monotonic), A* 
will find the optimal path without having to re-process those 

nodes that are already on the Closed list so it is more efficient. 

    

B. Hierarchical Pathfinding A* (HPA*) 

HPA* is a faster version of A* on very large grid-based maps 
through hierarchical abstraction. HPA* performs two phases: a 
resource-heavy work we call preprocessing that is performed 
only once offline, then in-phase that is performed quickly 
repeatedly online or in-real-time.  

1) Preprocessing Phase (Offline)  
The goal of this phase to build an abstract graph 

representation of the low-level map. The following are steps of 
this process:     

 Map Partition: The low level grid map, partitioned 
adjacent non-overlapping clusters. Each cluster in 
standard implementation is a square shape of fixed size, 
for example, tiles that are 10x10 or 15x15.  

 Entrance Identification: For each pair of neighboring 
clusters, the algorithm identifies every sequence of 
traversable tiles traversing their common border. Each 
continuous sequence of tiles is identified as an 
"entrance."  

 Abstract Graph Construction: A level-1 abstract 
graph is constructed. Each node corresponds to the 
entrance identified. Two kinds of edges exist in this 
abstract graph. 
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o Intra-edges: For each pair of entrances in the 
same cluster, connect them with directed 
edges. The weight of the directed edge is the 
cost of the optimal path to travel between the 
entrances on path (intra-cluster edge). This is 
pre-calculated using A* on the low-level grid 
in the cluster and stored in a cache for future 
use.   

o Inter-edges: Connect the opposing entrances 
of two neighboring clusters with directed 
edges. These edges represent the movement 
allowed from one cluster to another and 
usually have a low weight (1).  

 

Figure 2. Abstract Graph Construction in HPA. 

The HPA* approach introduces a classic trade-off - it invests 
a lot of computation time upfront during the preprocessing phase 
to generate and (cheaply) store local path information; this 
investment in offline computation "pays off" during the online 
computation, where in the case of an online search on a much 
smaller abstract graph much time is saved. HPA* provides the 
foundation for a suite of other hierarchical algorithms like 
DHPA*, which addresses dynamic environments through 
selective caching, or SHPA*, which offers a more sophisticated 
clustering scheme for more static environments. The 
contribution proposed in this paper is particularly an innovation 
along the "clustering" axis to enable HPA* to operate more 
efficiently on different types of maps.   

2) Search Phase (Online) When HPA*  
When HPA* receives a pathfinding request from a point start, S 
to goal, G. HPA* does the following steps:  

 Temporary Insertion of S and G: We insert S and G into 
the abstract graph as temporary nodes. We make temporary 
edges from S to all of the entrances in S's cluster. We also 
make temporary edges from all the entrances in G's cluster 
to G. We use low-level A* to determine the weights of the 
edges on-the-fly. 

 High-Level Search: We run A* on the expanded abstract 
graph to find the lowest-cost path from S to G. We get a 
sequence of entrances to pass through. 

 Path Refinement: The abstract path is then refined into an 
executable low-level path. For each intra-edge in the 
abstract path (movement within a single cluster), the low-
level path is retrieved from the cache created during the 
preprocessing step. Collectively, all of these low-level paths 
will give us a final path from S to G. 

 Path Smoothing (optional): The final path from S to G will 
often look "blocky" or unnatural. Optionally, a smoothing 
process can be applied to smooth the path. An example of 
this would be connecting distant nodes on the final path 
with a straight line if there are no obstacles to cross between 
these nodes. 

By limiting the expensive A* search to only small, local 
segments and executing the main search on a small high-level 
graph, HPA* shifts the performance bottleneck experienced by 
standard A* on large-scale maps. 

 

III. PROPOSED METHOD: ADAPTIVE HPA* (AHPA*) 

A. Motivation and Concept 

As previously described, standard HPA* divides the map 
into a homogenous grid of fixed-size clusters; from a 
development perspective, it's a very straightforward 
implementation, but it doesn't use available topological 
information from the map itself. Consider a standard RTS map 
that has a large and open base area, and several strategic choke 
points/narrow corridors. Standard HPA* "blindly" divides the 
area into several times too many small clusters in the large open 
area with multiple entrance and intra edges, and this creates 
unnecessary complexity in the abstract graph, with more nodes 
and edges in the higher level A* to evaluate, which reduces its 
overall performance.  

In contrast, an alternative way to 'partition' areas of a map 
into clusters would be to treat the large open space as a single 
logical element, and make it a single large cluster in the abstract 
graph. Likewise, complex dun under cover areas that have dense 
obstructions could be split into small clusters to maintain their 
topological representation.  

AHPA* is suggested based on the following hypothesis: the 
abstract graph will be smaller and less complex and more 
directly affect online searching times and fewer node expansions 
by creating clusters that conform to the topological structure of 
the map such that homogeneous, traversable areas have large 
clusters, whereas complex areas have small clusters. We are 
suggesting that there will be no meaningful degradation to the 
overall path quality at the higher level down to the graphical 
HPA* search. 

AHPA* can be viewed as the HPA* generalization. If 
standard HPA* is “top-down” approach where grid structure is 
imposed on the map, then AHPA* is the opposite where the 
map’s structure itself determines the shape and size of the 
clusters. 
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Figure 3. Illustration of Grid Partitioning in HPA and AHPA 

B. Adaptive Map Segmentation with Region Growing 

The main innovation of AHPA* is in preprocessing, and in 
how the map is segmented. AHPA* uses an image segmentation 
algorithm to combine traversable tiles into topologically-
consistent groups, instead of just applying labels to a static array. 
The algorithm we decided to use is called Region Growing.  

 

Figure 4. Region Growing Flowchart 

Region Growing is a good fit because how it works fits our 
purpose, as it applies a label to all the connected pixels (in this 
case map tiles) that have the same property. The most relevant 
property for pathfinding, in this case, is "traversability." The 
algorithm finds all connected explorable areas.  

In AHPA* the second phase, segmenting the map using Region 
Growing, proceeds as follows:  

 Initialization: Make a marker array (i.e., visited_tiles) of 
the same dimension as the map and set all of its values 
to false. Make an empty array to hold the final clusters.  

 Iterate the map: For each tile (x, y) on the map, repeat 
the following: 

o If (x, y) is an obstacle (a tile with an assigned 
label) OR if (x, y) is marked visited, skip to 
the next tile. 

o If (x, y) is traversable and has not been 
marked visited tile, it is a seed for a new 
cluster. 

 Region Growth (from Seed Points): 

a. Make a new cluster and add the seed point to it. Mark it as 
visited. 

b. Create a queue (we used some sort of First-In-First-Out 
implementation queue), and add the seed point to it. 

c. While the queue is not empty:  

i. Dequeue a tile current_tile from the front of the queue.  

ii. For each neighbor neighbor_tile of current_tile (using 4-
way or 8-way connectivity):  

* Check Growth Criteria: If neighbor_tile is within the map 
boundaries, is traversable, and has not been marked as visited:  

* Mark neighbor_tile as visited.  

* Add neighbor_tile to the current cluster.  

* Enqueue neighbor_tile.  

d. Once the queue is empty, the growth process for the 
current cluster is complete. Add this completed cluster to the list 
of clusters. 

 Completion: Repeat steps 2 and 3 until all tiles on the 
map evaluated. The final result is a list ofclusters with 
varying shapes and sizes, which accurately partitions all 
traversable areas of map. 

There is an inherent benefit to this approach with respect to 
changing dynamic environments. If a bridge connecting two 
landmasses is destroyed, a re-run of the Region Growing 
algorithm will simply separate the two landmasses into two 
clusters, no longer one. Conversely, if a bridge is created, the 
algorithm will merge the two separate clusters into a larger, new 
cluster. These kinds of adaptations to large-scale changes in 
topology occur within the core algorithm, without needing to 
treat this case separately. 

 

C. Adaptive Abstract Graph Construction 

Once the map has been partitioned into adaptive clusters, the 
remaining procedures in the AHPA* preprocessing phase is 
essentially following the same logic as standard HPA*, but 
applied to the new, non-uniform partition: 

 Entrance Identification: The algorithm looks at the 
borders between each pair of adjacent adaptive clusters 
in order to identify sequences of traversable tiles that 
can be defined as entrances. 

 Abstract Graph Construction: Similar to HPA*, the 
nodes in the AHPA* abstract graph are these entrances. 
The intra-edges are calculated by executing low-level 
A*, between all pairs of entrances in each adaptive 
cluster, the results are cached. The inter-edges link 
entrances that are adjacent but belong to different 
clusters. 

The key difference is that the abstract graph generated by 
AHPA* is more efficient. The large open areas are represented 
by only one or a few abstract nodes (the entrances at their edge), 
while the complex areas are represented with a higher density of 
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nodes. This gives us a "topologically optimized" abstract graph 
that can be searched faster during the online phase. 

 

IV. EXPERIMENTAL DESIGN AND RESULTS 

In order to validate the effectiveness of the AHPA* method, 
a comparative experimental study was designed and conducted. 
The monitor study was driven by the desire to quantitatively 
measure AHPA* performance against standard A* and standard 
HPA* performance across various topological scenarios with 
specific performance metrics relevant to RTS game applications. 

 

A. Environment and Test Scenarios 

The experiments were conducted on system with an Intel 
Core i7-9750H central processing unit (CPU) and 16 GB of 
Random Access Memory (RAM) in order to maintain the 
consistency and robustness of results. The algorithm 
implementations were built in C++ without third-party dedicated 
game engine libraries as a method to strip the performance out 
from the algorithms themselves. 

Algorithms Compared: 

1. Standard A:* Used as a grounding reference metric to 
capture path quality. This algorithm is run on the low-
level grid and produces a guaranteed optimal path that 
we will use as our baseline (0% deviation) for path 
quality measurement. 

2. Standard HPA:* A canonical approach to HPA* with 
fixed 15x15 tile clusters. This is used as a baseline to 
measure performance against heirarchical approaches 
that already exist. 

3. AHPA (Proposed):* Our best efforts at performing the 
method using Region Growing for adaptive clustering. 

Test Maps:  

Three 256x256 tile maps´were created specifically to test the 
hypothesis through a variety of topological contexts, as is 
standard for testing path itself:  

 Map 1: (Labyrinth): map handling a majority of long, 
narrow, and winding corridors with few larger open areas. 
This map was created as a worst case for high level 
abstraction, through a complex topology that created many 
small clusters.  

 Map 2: (Open Area): map with very few obstacles. 
Characterized as one or two very large open areas 
dominated this map It was designed to demonstrate a 
weakness of HPA*'s uniform clustering, and also to show 
the maximum potential benefit of AHPA*.  

 Map 3 (Mixed/Typical RTS): Map was designed with a 
typical RTS level design which included a balance of some 
open base area, resources scattered here and there, and some 
choke points connecting areas. For Map 3, it was likely the 
realistic test case. 

For each map, ten pre-created pathfinding problems (paired at 
random start and goal point configuration) were created to 
ensure that the results to be produced were statistically valid for 
noncertain specific start-goal point configurations.  

 

B. Evaluation Metrics 

The three main metrics were used to assess the performance of 
each of the algorithms. These evaluation metrics had been 
effective in similar studies of competitive comparison: 

1. Computation Time (milliseconds): Each algorithm’s 
execution time. HPA* and AHPA* divided in two:  

 Preprocessing Time: How long it takes to 
construct the hierarchical data strctures (the 
partitioning of the map, identifying entrances, and 
building in the cache). It will be completed once in 
offline time. 

 Average Search Time: The average time required 
to solve one pathfinding request from the 100 tested 
problems. The most critical online cost for real-
time performance. 

2. Search Efficiency (Number of Nodes Expanded): 
The total number of nodes inserted into the Closed List 
during the search. This metric is a good proxy for 
measuring the computational effort of the algorithm, 
independent of hardware speed. 

3. Path Quality (Path Length Deviation): How much the 
length of the path produced by HPA* and AHPA* 
deviates from the optimal path found by A*. Calculated 
with the formula:  

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(%) = (𝑃𝑎𝑡ℎ
𝐿𝑒𝑛𝑔𝑡ℎ

𝐴∗𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ
− 1) × 100% 

 

C. Results and Analysis 

Table 1. Pathfinding Algorithm Performance Comparison 

Test Map Algorith

m 

Preproc

essing 

Time 

(ms) 

Average 

Search 

Time 

(ms) 

Average 

Nodes 

Expande

d 

Path 

Length 

Deviati

on (%) 

Map 1 

(Labyri

nth) 

A* N/A 18.54 24,870 0.00% 

HPA* 112.8 1.95 2,155 1.15% 

AHPA* 125.3 1.88 2,098 1.21% 

Map 2 

(Open 

Area) 

A* N/A 25.12 35,600 0.00% 

HPA* 109.5 2.81 3,050 0.88% 

AHPA* 115.1 0.45 488 0.95% 

Map 3 

(Mixed) 

A* N/A 21.77 29,110 0.00% 

HPA* 115.2 2.43 2,640 1.42% 

AHPA* 130.6 0.89 965 1.55% 
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Figure 5. Graph illustration 

The results presented in Table 1 resulted in a number of 
important observations: 

  

1. Processing Time Investigation: As we expected, AHPA* 
has a slightly greater amount of preprocessing time (roughly 
10-15%), in all scenarios relative to HPA*. This is of course 
due to the added cost of the Region Growing segmentation 
step. However, we view this cost as a one time offline 
investment, that, as we will see, has considerable gains to 
be made in the online phase. 

2. Performance Investigation on the CL Labyrinth Map: 
The performance of AHPA* and HPA* is very similar on 
Map 1. Average search time and the number of nodes 
expanded are essentially identical. This corroborates the 
hypothesis: the dense structure of the labyrinth topology 
results in both methods producing small clusters more or 
less naturally, so the resulting abstract graphs have a similar 
degree of complexity. This indicates that in the absolute 
worst case scenario, AHPA* can be no worse than standard 
HPA*. 

3. Performance Investigation on the CL Open Area (Map): 
Map 2 is when it shines brightest in terms of confirming that 
AHPA* is superior to HPA*. AHPA* is 6.2 times faster 
than HPA* in average search time (0.45 ms vs 2.81 ms), and 
expands only about 16% of the number of nodes expanded 
by HPA*. This acts as a direct confirmation of our central 
hypothesis. Region Growing has effectively clustered the 
large open area by detecting it all as one large cluster, which 
resulted in a very simple and concise abstract graph. In 
contrast, HPA* broke the same area into numerous 
unnecessary 15x15 clusters that resulted in a much slower 
high level search. 

4. Performance Analysis on the Mixed Map: On Map 3 - 
the most realistic representation of an RTS map - the 
advantage goes to HPA*, with AHPA* being 2.7 times 
faster than HPA* (0.89ms vs 2.43ms) with far fewer node 
expansions. This illustrates how AHPA* adapts to the 
topology by creating large clusters for bases and small 

clusters at choke points which make an overall much more 
efficient abstraction for navigation.  

5. Path Quality Analysis: During our tests, both HPA* and 
AHPA* showed low deviations for path length, typically 
below 2% of the optimal A* path length. Again this 
indicates that the performance benefits of AHPA* are 
achieved with little meaningful sacrifice to path quality; 
while it may really be ideal to obtain the *perfect* path, 
obtaining performance and a good enough path is an 
acceptable trade off in real-time applications.  

Overall, I think these results do provide strong evidence to 
support the claim that topology-based adaptive clustering is a 
better approach to quadratic clustering for hierarchical 
pathfinding on different maps.  

 

V. CONCLUSION 

This work was motivated by an elementary problem 
regarding RTS game development: the pursuit of a fast, reliable, 
pathfinding system that could handle large-scale maps and 
hundreds of units in real-time. The standard A* algorithm was 
optimal, but as expected too slow. Hierarchical Pathfinding A* 
(HPA*) represents an industry suitable solution by abstracting 
the map; however, the inefficient uniform clustering used by 
HPA* results in a less than ideal outcome for heterogeneous 
topologies in the game world. 

The primary contribution of this paper is the introduction and 
empirical evaluation of Adaptive HPA (AHPA), a variant of 
HPA* which substitutes the static grid clustering technique with 
an adaptive map segmentation approach that employs the 
Region Growing algorithm. This allows AHPA* to create an 
abstract graph that adapts to the topological structure of the 
game environment, with larger clusters for more open spaces, 
and smaller clusters to correspond with more complex areas. 

The results of the comparative experiments provide strong 
evidence in support of the research hypothesis. AHPA* 
consistently proved better than standard HPA* in online search 
time and search efficiency (nodes expanded). This improved 
performance was most impressive on maps that combined open 
areas with narrow corridors—a very standard situation in real-
time strategy (RTS) level design. This speed increase performed 
with a little more pre-processing, and a very little and acceptable 
diminishment in path quality, shows that AHPA* provides a 
better trade-off when applied to real-time applications. 

Future research should consider the breaches more than AHPA* 
also suggests: 

 Better Clustering Algorithms: Future research could 
employ better segmentation or graph clustering algorithms 
to create more complex segmentation, such as watershed-
based methods or community detection algorithms, such as 
Louvain , to hopefully produce more optimal abstractions 

 Integration of Path Smoothing: Pathing produced by grid-
based algorithms such as AHPA* tend to be rigid, it would 
be interesting to integrate efficient path smoothing 
algorithms, e.g., splines or Bézier curves, as a post-
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processing step to produce natural looking movements 
(visually smooth). 

 Handling Fully Dynamic Environments: This research 
focused on static obstacles. The next step is to adapt 
AHPA* to handle fully dynamic environments, including 
moving obstacles like other units. This could involve 
drawing inspiration from variants like DHPA* for dynamic 
cache management or integrating AHPA* with a local 
collision avoidance system.    

In conclusion, AHPA* offers a robust and logical 
improvement over HPA* by addressing its core weakness in 

the abstraction process. By making the clustering process 

topology-aware, AHPA* takes a step forward in the quest for 

intelligent, fast, and scalable pathfinding for the next 

generation of real-time strategy games. 

 

VI. APPENDIX 

Github: https://github.com/BenedictusNelson/pathfinding-

program 

(repository for testing performance and path quality of the proposed 

AHPA* algorithm compared to A* and HPA* program.) 
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